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Variational principles for the thermoelastic problem with heat sources 
and sinks are deduced. In the absence of sources and sinks the analogous 
variational equation was obtained by Biot [l] , on the basis of thermo- 
dynamics of linear irreversible processes. It is shown under what condi- 
tions Biot's generalized variational equation passes to the variational 
equations of thermodynamics of equilibrium processes [2,3 1. 

At the instant of time r = 0, let an elastic body have a constant 
absolute temperature T and let it be in its natural state, i.e. when the 
stresses and strains are absent. 

At the instant of time r, due to the effect of external forces and 
temperatures, given boundary conditions on the surface, as well as due 
to internal heat sources and sinks, the strains and temperatures inside 
the body will take on the values 

where rk(k = 1, 2, 3) are Cartesian coordinates. 

We shall assume that the IMamel-Neumann equations are valid at any 
instant of time 

$k = weik + the - @f &r 
1 for i=k 

‘“={O for i+k 

Here eik are the components of the strain tensor 

LL is the coefficient of linear expansion, v is Poisson's ratio, X and p 

are Lame's constants. In the absence of body forces the equations of 
equilibrium in terms of displacements and the boundary conditions in 
terms of tractions are of the form 
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pv% + (A + p) grad e - fj grad 0 = 0, aik I, - Pi = 0 (3) 

where u is the displacement vector, e = div u, Pi are the components of 
the surface traction vector, 1, are the direction cosines of the external 

normal. 

To obtain the equation which relates the deformations to the tempera- 

ture, we use the equation of conservation of heat dh = - div q dr + ah, 
and defining the heat-flux vector q by the temperature gradient in 

accordance with Fourier’s law q = - k grad 0, we obtain 

dh = kv28dz + dw (4) 

Here dw/& is the specific strength of the heat sources aud sinks, k 

is the coefficient of heat conduction. 

The quantity of heat dh, received by an element of volume within the 
time interval c& , may be calculated if the density of the internal 

energy of the body is known. Since the internal energy is a function of 

state, it may be assumed in calculating it that the passage from the 

natural equilibrium state to any non-equilibrium state, corresponding to 

the instant of time r , is realized in a reversible manner. 

Let us introduce some generalized heat capacity Ci,. Then we obtain 

for the increment of the internal energy density 

da = dh f aikdeik = (air, + Cik) deik + 

Here C is the heat capacity for constant volume. 

Cd0 (5) 

From the definition of internal energy as a function of state, and on 

the basis of (51, we have 

aa aa 
---=bik+Cik, ---- 

aeik a0 - 

We calculate the increment of the entropy density per tiit of volume 

dh cik 
ds = z= ~1 deik + T1 cd0 (7) 

From the second law of thermodynamics it follows that ds is a total 

differential of the independent variables eik and 8, i.e. 

aS ‘, as c 
-=- 
ae,, T1 ’ - = F ae (8) 

Eliminating from Equations (6) and (8) the internal energy density 
and the entropy, respectively, and using Equation (1) we obtain 
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(9) 

It follows 

c = c (e) (10) 

Having the expression for the heat capacity (10) we find in accordance 

with (6) 

a3 
- = 2peik + (he + PT) 6ik 3 

aeik 
+& = ’ (11) 

Assuming the quantity 8 to be small as compared to the initial absolute 

temperature of the body T, and assuming the heat capacity C, as well as 

the constants A, p and p to be independent of the temperature, HR obtain, 

with an accuracy within an arbitrary constant 

3 = p?jk2 + ( + e&i, + BT) > e + Ce 

From the law of conservation of energy and from relations (11) we ob- 

tain the increment of heat 

dh = p (2’ + 0) de + Cd0 (12) 

Linearizing (12) and integrating with initial conditions h = 0, e = 0, 
8 = 0 for r = 0 we have 

h = fJTe + 03 (13) 

‘Ihus, in accordance with (4) and (131, the equation relating the 

strains and the temperature of the elastic body is in the form of a 

generalized equation of heat conduction 

d0 de dw 
C z + PT da = kvzQ + -&- 

Equations (3) and (14), for given initial and boundary conditions, 

permit the determination of the tenperature 8 and the displacement vector 

u as a function of time and of the space coordinates. 

Following Biot [ 11, we express the equations of thennoelasticity with 

the aid of two independent vectors, namely the dispLacement vector u and 

the vector S, related to the temperature 0 in accordance with 

dS k 
x=-Tg rad 0 

Eliminating with the aid of (15) the temperature on the right-hand 

side of the equation of heat conduction and carrying out the integration, 

we find 
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CQ + BTe = - T dk S + w + Cr fzk) 

Using the initial condition 8 = 0, e = 0, S = 0, w = 0 for r = 0 we 

obtain C,(x,) = 0. 

From Equation (161 it follows that the temperature may be determined 

as a function of two independent vectors u, S and of heat supplied by 

sources 

‘Ihe equation of heat 

of (151 and (17) to the 

o = - $ [div (S + pu) - G] (17) 

conduction (14) may be transformed with the aid 

form 

T dS 
T z + grad 0 = 0 (18) 

To obtain the variational equations of thenaoelasticity we multiply 

the equilibrium and the boundary conditions (31, as well as the equation 

of heat conduction (18), by the independent variations 6u and SS, 
respectively. Integrating over the volume and the surface we find 

@II + (A + p) grad e - #! grad 81 6udv = 0 

(vf 

-f-$+gradO BSdv=O, 
> SI 

l (is*, I, - Pi) 6u,di-l = 0 

(8) c.Q, 

From relations (19) the identity follows 

\I - f%, 1, - Pi) 6Ui ds2 - [pv% + (A + p) grad e - fl grad 91 Buds + 
(ha) (U) 

-I- SSH 

T dS -- k dZ +gradfl 
> 

BSdv =O 

(0) 

(20) 

Using the equation of ~~l-Ne~a~ (11, as well as the relation 

between the strains and the displacements, we transform the identity 

(20) to the form 

ss @,k 'k - Pi) dUidB - ;~I_gradil,%dv =0 \ (21) 
tW 

Transforming the triple integrals in Expression (21) by the formula 

of Gauss-Ostrogradski and taking into account the variation of the 

temperature in accordance with (17) 
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6fj = - T [div (6S + ~SU) - $1 (22) 

we obtain the variational equation of thermoelasticity with heat sources 

and sinks in the form 

\\\ [8 (W + g) - f 8w] dv + \\\ f g 6s du = \\ (P-6U + Bn.&) di2 (23) 

(0) (v) i.4) 

Here W is the specific potential energy of isothermal deformation 

(e = 0) 

A 

p is the vector of intensity of the surface loading, n = - (lb&) is the 

unit vector of the internal normal, j& are the base vectors of the co- 
ordinate system %&. 

For the case when the heat sources and sinks are given functions of 

coordinates and time, the variational equation (23) coincides in form 

with the analogous equation of Biot [l] 

w + sss T dS 
~-@Sdv= 

ss 
(P&I + 8x1 BS) dS2 

(fJ) cfi, 
(v =\\i(W+g)dv) (24) 

0 

In contrast to Biot's equation, in calculating the variations by 

Formula (24) one should take into account the dependence of the tempera- 

ture not only on the vectors U, S, but also on the sources of heat 

w(x&' r) in accordance with (17). 

For independent U, S and w, the variation with respect to u gives the 
equation of equilibrium and the force boundary conditions (3), while 

variation with respect to S yields the equation of heat conduction (14). 

Let us note that for independent u, S and given distribution of heat 
sources and sinks (SW = 0) the variational equation (23) may be written 

down in the fonn of Lagrange's equations for a system with energy dis- 

sipation: 

D plays here the role of the dissipation function, and V that of the 
potential energy of the system; q, 
may be used to express the vectors 

are the generalized coordinates which 
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as well as the quantities V and D. ‘lhe corresponding generalized forces 
are 

Qn=~&?&+&~)d~ 

Let us show under what conditions the variational equation of thenno- 
elasticity (231, which takes into account irreversible phenomena in 

thermoelastic processes, may be replaced by variational equations of 

classical thermodynamics of equilibrium processes. 

Eliminating ds/& from the basic equation (23) with the aid of (18) 

and integrating by parts, we obtain 

Replacing in (26) the generalized free energy by means of the internal 

energy 

and linearizing in accordance with (L2), (131, we find 

(27) 

Here 3 is the internal energy of the system. From (27) we obtain on 

the basis of (13) 

os-\pldv=~\P.6udR (28) 
(0) W) 

In the particular case of thexmoelastic processes which are not 

accompanied by a supply or removal of heat, the variation 6h should be 

set equal to zero and Equation (28), following from the basic equation 

of thermoelasticity (231, passes into the variational equation of 

adiabatic processes of classical thermodynamics. 

One should keep in mind that the variations 68 and 6e for an 

adiabatic process (Sh = 01, in accordance with (131, are related by the 

additional expression 

Let us now transform the basic variational equation (23) for the case 

of an isothermal process. Using (26) and replacing divas with the help 

of (17) 
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div 6S = (29) 

we find 

(30) 

'Ihe variation of the temperature $8, on the basis of the definition 
of the vector S and relation (291, may be represented in the form 

(3%) 

From Ekpression (31) it follows that an 
ation of a non-uniformly heated body (S6 = 
stationary temperature field, when 

oq = 0 

and in the presence of a special system of 
sinks 

w=fiTe 

0 
isothermal process of deform- 
0) is realized only for a 

(38 

distribution of sources and 

(33) 

compensating the heat produced in the elastic body during the process 
of deformation. 

In this case the variation 66 in Expression (301 
zero, and the variational equation of an isothermal 
form 

may be set equal to 
process takes on the 

Here F is the classical free energy (Helmholtz's potential) 

(34) 

P= 

The variational equation (34) is identical with the equation of thermo- 
elasticity of classical the~d~~lcs of equilibrium processes in the 
form suggested by Henp [3 3,or if one introduces some fictitious body 

and surface forces 

NV=--grad@, N, = - pen 

to the variational equation of thermoelasticity due to Kachanov [Z 1 

6 \\) Wdv = \ 1 {P - fib) 6udQ - \\\ p grad bhdv 
u (Q) (v) 
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l’hus, the variational equations of Kachanov and Hemp which correspond 
to the isothermal problem of thermoelasticity are valid, strictly speak- 
ing, only for a stationary temperature field ( V ‘8 = 0) for sources and 
sinks w = /3Te. 

these variational equations may be considered as approximate if 
during the process of deformation the phenomenon of heat conduction may 

be neglected. 
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